
Information Systems Security

Lectures 7 & 8

Web Security
Dr. En. Bader Ahmad

2

References

[1] Google Code for Educator: Sample Course Content, Web
Security.

 http://code.google.com/edu/content/submissions/web_se
curity/listing.

[2] Network security, The complete Reference. R. Bragg, M.
Rhodes-Ousley, K. Strassberg. McGraw-Hill Osborne,
2004.

http://code.google.com/edu/content/submissions/web_security/listing
http://code.google.com/edu/content/submissions/web_security/listing

3

Outline

1. Web System

2. Web System Security

3. Simple Web Server

4. Web Server Security

5. Web Browser Security

6. Web Application Security

7. Communication Security

8. ID and FW

4

1. Web System

 Generic web application work flow diagram:

5

Web System

Web
Browser

HTML forms,

Java, Cookies,

JavaScript,

VBScript,

Plug-ins, etc.

http request

Web
Server

Web

Application

 CGI, Java

Servlets,

ASP, SSI,

J2EE, PHP,

etc.

Web
Server

Resources

Applications

http reply

http/SSL/
TCP/IP

6

2. Web System Security

1. Web Server Security

2. Web Browser Security

3. Web Application Security

4. Channel Security

7

3. Simple Web Server*

 To illustrate what can go wrong if we do not design for

security in our web applications from the start, consider

a simple web server implemented in Java.

 All this program does is serve documents using HTTP.

 We will walkthrough the code in the following slides.

 This web server only supports simple HTTP GET

requests.

* Slides 7-17 taken from [1]

8

Some Preliminaries…

 HyperText Transfer Protocol (HTTP): The

communications protocol used to connect to servers on

the Web.

 Its primary function is to establish a connection with a

Web server and transmit HTML pages to the client

browser or any other files required by an HTTP

application.

 http is stateless (ie, request/reply)

 Addresses of Web sites begin with an http:// prefix.

9

Some Preliminaries…

 A typical HTTP request that a browser makes to a
web server:

 Get / HTTP/1.0

 When the server receives this request for filename
/ (which means the root document on the web
server), it attempts to load index.html. It sends
back:

 HTTP/1.0 200 OK

 followed by the document contents.

10

SimpleWebServer: main()

 /* This method is called when the program is run from the

command line. */

public static void main (String argv[]) throws Exception {

 /* Create a SimpleWebServer object, and run it */

 SimpleWebServer sws = new SimpleWebServer();

 sws.run();

}

11

SimpleWebServer Class

public class SimpleWebServer {

 /* Run the HTTP server on this TCP port. */

 private static final int PORT = 8080;

 /* The socket used to process incoming
connections

 from web clients */

 private static ServerSocket dServerSocket;

 public SimpleWebServer () throws Exception {

 dServerSocket = new ServerSocket (PORT);

 }

 public void run() throws Exception {

 while (true) {

 /* wait for a connection from a client */

 Socket s = dServerSocket.accept();

 /* then process the client's request */

 processRequest(s);

 }}

12

SimpleWebServer: processRequest 1

 /* Reads the HTTP request from the client, and

 responds with the file the user requested or

 a HTTP error code. */

 public void processRequest(Socket s) throws

Exception {

 /* used to read data from the client */

 BufferedReader br =

 new BufferedReader (new InputStreamReader

(s.getInputStream()));

 /* used to write data to the client */

 OutputStreamWriter osw =

 new OutputStreamWriter (s.getOutputStream());

13

SimpleWebServer: processRequest 2

 /* read the HTTP request from the client
*/

 String request = br.readLine();

 String command = null;

 String pathname = null;

 /* parse the HTTP request */
 StringTokenizer st =

 new StringTokenizer (request, " ");

 command = st.nextToken();

 pathname = st.nextToken();

14

SimpleWebServer: processRequest 3

 if (command.equals("GET")) {

 /* if the request is a GET

 try to respond with the file

 the user is requesting */

 serveFile (osw,pathname);

 }

 else {

 /* if the request is a NOT a GET,

 return an error saying this server

 does not implement the requested
command */

 osw.write ("HTTP/1.0 501 Not
Implemented\n\n");

 }

 /* close the connection to the client */

 osw.close();

15

SimpleWebServer:
serveFile 1

 public void serveFile (OutputStreamWriter osw,

 String pathname) throws Exception {

 FileReader fr=null;

 int c=-1;

 StringBuffer sb = new StringBuffer();

 /* remove the initial slash at the beginning

 of the pathname in the request */

 if (pathname.charAt(0)=='/')

 pathname=pathname.substring(1);

 /* if there was no filename specified by the

 client, serve the "index.html" file */

 if (pathname.equals(""))

 pathname="index.html";

16

SimpleWebServer:
serveFile 2
/* try to open file specified by pathname */

 try {

 fr = new FileReader (pathname);

 c = fr.read();

 }

 catch (Exception e) {

 /* if the file is not found,return the

 appropriate HTTP response code */

 osw.write ("HTTP/1.0 404 Not
Found\n\n");

 return;

 }

17

SimpleWebServer:
serveFile 3

 /* if the requested file can be
successfully opened and read, then return
an OK response code and send the contents
of the file */

 osw.write ("HTTP/1.0 200 OK\n\n");

 while (c != -1) {

 sb.append((char)c);

 c = fr.read();

 }

 osw.write (sb.toString());

18

SimpleWebServer Vulnerabilities

 Can you identify any security vulnerabilities in

SimpleWebServer? Or what can go wrong?

 Yes: Denial of Service (DoS):

– An attacker makes a web server unavailable, but

– How?

 DoS on SimpleWebServer:

– Just send a carriage return as the first message instead of a

properly formatted GET message…

– The web server crashes

– Service to all subsequent clients is denied until the web server

is restarted

19

4. Web Server Security:
Overview

 Consider the following HTML code:

<html>

<head>

<title> Hello world </title>

</head>

</html>

 Attackers can try 2 strategies to penetrate the web

server hosting this HTML code:

– Exploit web application insecurity

 there no Exploit in this code

– Hacking web server itself

 See the SimpleWebServer : DoS attack

20

Web Server Security: Goals of
server attacks

1. Web site defacement

– Corruption of the HTML code.

– Example: Next slide

2. Data Corruption

– Any data on the server can be deleted or modified.

3. Data Theft

– eg, credit card number stolen from e-commerce site.

4. Denial of service

– Clients are no more served.

21

http://www.syria-news.com

22

Web Server Security: Types of
attacks

1. Directory traversal

2. Script permissions

3. Directory Browsing

4. Default samples

23

Web Server Security: Types of
attacks

1. Directory traversal

– Is a method for accessing directories other than the allowed

ones.

– In Microsoft‟s IIS, if the OS XP is installed on drive c: and

administrator didn‟t change the directory name, the default

web site directory is c:\inetpub

– Attackers can read file they are not meant to. For example

 If the attacker try

http://www.somesite.com/../autoexec.bat then the server

may return the content of autoexec.bat.

http://www.somesite.com/../autoexec.bat

24

Web Server Security: Types of
attacks

2. Script permissions

 In order to run server-side applications (eg, CGI, Perl, etc.),

administrator must grant executable permission to the

directory where these applications reside.

 What happens if the admin grand permissions to the wrong

directory?

 Example: if the admin grants executable permission to c:

then what happens if the attacker try

http://www.somesite.com/../Windows/system32/cmd.exe%2

0%2fc%20dir

http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat
http://www.somesite.com/../autoexec.bat

25

Web Server Security: Types of
attacks

 The web server parse the request and execute

 ../windows/system32/cmd.exe /c dir

 ie, listing all files in the current directory.

– Attacker can execute commands that delete or modify files

on the web server.

3. Directory Browsing

 If Directory Browsing is enabled, attacker can browse that

directory and its subdirectories.

 Knowledge of the existence of some file can help attacker

launching an attack.

26

Web Server Protection

1. Run web server service with Least privileges.

2. Install most recent security patches of server software.

3. Install most recent security patches of OS.

4. Secure other network services running on the same machine.

5. Delete unneeded applications.

6. Grant script permissions only to isolated directory containing

the scripts in question.

7. Maintain adequate logs and backups.

8. Secure your web server using third-party security products:

antiviruses, Firewalls, vulnerabilities scanners, input

validation, etc.

27

5. Web browser Security

 Browser sends requests

– May reveal private information (in forms, cookies)

– Also sends other information that may be damaging:

 IP address

 OS

 Browser version/type, etc.

 Browser receives information, code

– May corrupt hosts by running unsafe code

– Information may exercise a bug in the browser allowing
arbitrary remote code execution.

28

Web browser Security

 Cookies
– Cookie mechanism

 Mobile code
– Java applet

– JavaScript

– VBScript

29

Web browser Security: Cookies

 HTTP is stateless. This causes problems in a lot of
transactions that need a concept of a “session”:
– A customer wants to purchase an item online.

– A customer logs onto their bank to pay bills

– Sites like Yahoo allow users to customize their view of the portal

– As the user jumps from web page to web page, the server can‟t
keep track of whether it‟s the same user, or another user
requesting the same page

– Servers use cookies to keep track of their users.

 A cookie is a file created by an Internet site to store
information on your computer

– Once a cookie is saved on your computer, only the Web site that
created the cookie can read it.

30

Web browser Security: Cookies

 Example: google’s cookie
 PREF

 ID=186f76e084b84d56:TM=1193982844:LM=1193982844:S=O8OM9yhkCkr98Ej
_

 google.co.uk/

 1536 //3081004544 // 30038711 //2452507808 // 29891852

 *

 Problems
– Cookies maintain record of your browsing habits

 May include any information a web site knows about you

– Browser attacks could invade your “privacy”

– Stealing someone’s cookies may allow attacker to impersonate the
victim:

 Session hijacking

31

Web browser Security: Mobile
Code

 Mobile code runs on clients‟ machine.

 It‟s an executable content (eg, applets).

 Things to do:

– Protect machine from downloaded code.

– Needs protection from content providers.

 Normal users are asked to make security decisions /policies.

Web
browser

Web
Server

executes
applet

Mobile Code
(eg, applet)

32

Web browser Security: Mobile Code

 Web pages may contain executable code written in java,
VB, Javascript, etc.

– Those downloadable and executable code are called mobile codes

 Run on clients’ machines

 Mobile code may contain malicious code

 Many types of mobile codes:

– Java Applets

– ActiveX

– JavaScript

Web
browser

Web
Server

executes
applet

Mobile Code
(eg, applet)

